D1-like dopaminergic activation of phosphoinositide hydrolysis is independent of D1A dopamine receptors: evidence from D1A knockout mice.
نویسندگان
چکیده
Accumulated evidence suggests that dopamine and dopamine D1 agonists can activate phospholipase C in both brain and peripheral tissue. The receptor that mediates the hydrolysis of phosphoinositides has not been identified. The cloned dopamine D1A receptor that is generally thought to be linked to adenylyl cyclase, has also been proposed to couple to phospholipase C. However, a number of studies have suggested that this signaling pathway is mediated via a distinct D1-like dopamine receptor. We tested whether the D1A site plays a role in stimulating phosphoinositide hydrolysis by using the dopamine D1A-deficient mutant mice as a test model. Results show that although D1 dopamine receptor-mediated product on of cAMP is completely absent in membranes of D1A-deficient mice, D1 receptor-mediated accumulation of inositol phosphate is identical in tissues of mutant and wild-type animals. Furthermore, the coupling of [3H]SCH23390 binding sites in striatal or frontal cortex membranes to G alpha s is markedly reduced, although coupling of [3H]SCH23390 binding sites to G alpha q was unaltered in tissue taken from D1A mutant mice compared with control animals. These results clearly demonstrate that dopaminergic stimulation of inositol phosphate formation is mediated by a D1 dopamine receptor subtype that is distinct from the D1A receptor that activates adenylyl cyclase.
منابع مشابه
ACCELERATED COMMUNICATION D1-like Dopaminergic Activation of Phosphoinositide Hydrolysis Is Independent of D1A Dopamine Receptors: Evidence from D1A Knockout Mice
Division of Molecular Pharmacology, Departments of Pharmacology and Psychiatry, MCP-Hahnemann School of Medicine, Philadelphia, Pennsylvania 19129 (E.F., L.-Q.J., G.-P.C., H.-Y.W.), Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 (T.R.H., D.R.S.), and Department of Anatomy, Monash University, Clay...
متن کاملModulatory actions of dopamine on NMDA receptor-mediated responses are reduced in D1A-deficient mutant mice.
The role of D1 dopamine (DA) receptors in mediating the ability of DA to modulate responses attributable to activation of NMDA receptors was examined in mice lacking D1A dopamine receptors. Specifically, experiments were designed to test the hypothesis that the ability of DA to potentiate responses mediated by activation of NMDA receptors was attributable to activation of D1 receptors. Based on...
متن کاملSelective inhibition of the renal dopamine subtype D1A receptor induces antinatriuresis in conscious rats.
Both dopamine D1-like (D1A and D1B) and D2-like (D2, D3, and D4) receptor subfamilies are present in the kidney. Blockade of the intrarenal D1-like receptor family is associated with natriuresis and diuresis. Because the D1A and D1B receptor subtypes are not distinguishable by currently available dopaminergic agents, their functional role remains undefined. In the present study, the effect of s...
متن کاملRole of the D1A dopamine receptor in the pathogenesis of genetic hypertension.
Since dopamine produced by the kidney is an intrarenal regulator of sodium transport, an abnormality of the dopaminergic system may be important in the pathogenesis of hypertension. In the spontaneously hypertensive rat (SHR), in spite of normal renal production of dopamine and receptor density, there is defective transduction of the D1 receptor signal in renal proximal tubules, resulting in de...
متن کاملHigher basal serine phosphorylation of D1A receptors in proximal tubules of old Fischer 344 rats.
Dopamine (DA) and D1-like receptor agonists promote an increase in Na excretion by means of activation of the D1-like receptor signaling cascade and subsequent inhibition of the Na/H exchanger and Na-K-ATPase in renal proximal tubules. Recently, our laboratory reported that DA and the D1-like receptor agonist failed to inhibit Na-K-ATPase activity in old Fischer 344 rats because of uncoupling o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 51 1 شماره
صفحات -
تاریخ انتشار 1997